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Abstract

In this paper, the behavior of two parallel symmetry permeable cracks in functionally graded piezoelectric/piezo-
magnetic materials subjected to an anti-plane shear loading is investigated. To make the analysis tractable, it is assumed
that the material properties cq4, €15, €11, 15, di1 and u,; vary exponentially with coordinate parallel to the crack. By
using the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations in which
the unknown variables are the jumps of the displacements across the crack surfaces. These equations are solved using
the Schmidt method. The normalized stress, the electrical displacement and the magnetic flux intensity factors are
determined for different geometric for the permeable electric boundary conditions. Numerical examples are provided to
show the effect of the geometry of the interacting crack and the parameter f§ describing the functionally graded materials
upon the stress intensity factor of the cracks.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Combining two or more distinct piezoelectric and piezomagnetic (magnetostrictive) constituents, piezo-
electric/piezoemagnetic composite materials is able take the advantages of each constituent and conse-
quently have superior coupling magnetoelectric effect as compared to conventional piezoelectric material or
piezomagnetic material. The magnetoelectric coupling is a new product property of the composites, since it
is absent in each constituent. In some cases, the coupling effect of piezoelectric/piezomagnetic composites
can be even obtained a hundred times larger than that in a single-phase magnetoelectric materials. Con-
sequently, they are extensively used as magnetic field probes, electric packaging, acoustic, hydrophones,
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medical ultrasonic imaging, sensors, and actuators with the responsibility of magneto-electro-mechanical
energy conversion (Wu and Huang, 2000). When subjected to mechanical, magnetic and electrical loads in
service, these magneto-electro-elastic composites can fail prematurely due to some defects, e.g. cracks,
holes, etc. arising during their manufacturing processes. Therefore, it is of great importance to study the
magneto-electro-elastic interaction and fracture behaviors of magneto-electro-elastic composites (Sih and
Song, 2003; Song and Sih, 2003). The development of piezoelectric/piezomagnetic composites has its roots
in the early work of Van Suchtelen (1972) who proposed that the combination of piezoelectric/piezo-
magnetic phases may exhibit a new material property the magnetoelectric coupling effect. Since then, the
magnetoelectric coupling effect of BaTiO;—CoFe, 04 composites has been measured by many researchers.
Much of the theoretical work for the investigation of magnetoelectric coupling effect has only recently been
studied in the works (Wu and Huang, 2000; Sih and Song, 2003; Song and Sih, 2003; Harshe et al., 1993;
Avellaneda and Harshe, 1994; Nan, 1994; Benveniste, 1995; Huang and Kuo, 1997; Li, 2000). On the other
hand, the development of functionally graded materials has demonstrated that they have the potential to
reduce the stress concentration and increase of fracture toughness. Consequently, the concept of func-
tionally graded materials can be extended to the piezoelectric/piezomagnetic materials to improve the
reliability of piezoelectric/piezomagnetic materials and structures. Some applications of functionally graded
piezoelectric materials have been made as discussed in the works of Takagi et al. (2003) and Jin (2003).
Recently, Chen et al. (2003), Jin and Zhong (2002), Wang (2003), Soon (2003), Weng and Li (2002) and Li
and Weng (2002) analyzed the fracture problems of functionally graded piezoelectric materials. Weng and
Li (2002) first considered the static anti-plane problem of a finite crack in functionally graded piezoelectric
material strip. Their results showed that the singular stress and electric displacements in functionally graded
piezoelectric materials carry the same forms as those in a homogeneous piezoelectric materials but the
magnitudes of the intensity factors depend significantly upon the gradient of the functionally graded
piezoelectric materials properties. To our knowledge, the electro-magnetic-elastic behavior of functionally
graded piezoelectric/piezomagnetic materials with two parallel symmetric permeable cracks subjected to an
anti-plane shear loading has not been studied by using the Schmidt method (Morse and Feshbach, 1958;
Zhou et al., 1999; Zhou and Wang, 2002).

In this paper, we attempt to extend the concept of functionally graded materials to the piezoelectric/
piezomagnetic materials. The magneto-electro-elastic behavior of two parallel symmetric permeable cracks
in functionally graded piezoelectric/piezomagnetic materials subjected to an anti-plane shear stress loading
is investigated using the Schmidt method (Morse and Feshbach, 1958; Zhou et al., 1999; Zhou and Wang,
2002). Fourier transform is applied and a mixed boundary-value problem is reduced to two pairs of dual
integral equations. In solving the dual integral equations, the jumps of the displacements across the crack
surfaces are expanded in a series of Jacobi polynomials. This process is quite different from that adopted in
previous works (Wu and Huang, 2000; Sih and Song, 2003; Song and Sih, 2003; Van Suchtelen, 1972;
Harshe et al., 1993; Avellaneda and Harshe, 1994; Benveniste, 1995; Huang and Kuo, 1997; Li, 2000;
Takagi et al., 2003; Jin, 2003; Chen et al., 2003; Jin and Zhong, 2002; Wang, 2003; Soon, 2003; Weng and
Li, 2002; Li and Weng, 2002). The form of solution is easy to understand. Numerical solutions are obtained
for the stress intensity factors for permeable crack surface conditions.

2. Formulation of the problem

It is assumed that there are two parallel symmetric cracks of length 2/ in functionally graded piezo-
electric/piezomagnetic materials as shown in Fig. 1. / is the distance between two parallel crack. The
functionally graded piezoelectric/piezomagnetic materials boundary-value problem for anti-plane shear is
considerably simplified if we consider only the out-of-plane displacement, the in-plane electric fields and the
in-plane magnetic fields. Since no opening displacement exists for the present anti-plane problem, the crack
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Fig. 1. Two parallel symmetric cracks functionally graded piezoelectric/piezomagnetic materials.

surfaces can be assumed to be in perfect contact. Accordingly, permeable condition will be enforced in the
present study, i.e., both the electric potential and the normal electric displacement are assumed to be
continuous across the crack surfaces. So the boundary conditions of the present problem are (In this paper,
we just consider the perturbation field.)

ng_l)()ﬁ h+) = )(;)(xv hi) = —‘Eo(X), |x| < l

(6,04 = 10, 07) = —ro(a), || <! M)
w(x,0) =w®(x,07), |x| >1
¢V, ht) =P, h7), DO (x, k) = DO (x,h7)
V) =y i), BOG ) =BG A) 2)
s X 00
¢(2) (x, 0+) = (,25(3)()(7, 0_), Diz) (X, O+) - D)<;3>(xa 0_)
Y (x,00) =y (x,07), B (x,0%) =BV (x,0)
w(x, ) = w? (x,0) = w®(x,») =0 for (* +)1)"* — oo (3)

In this paper, 7o(x) is the anti-plane shear loading. Also note that all quantities with superscript &
(k=1,2,3) refer to the upper half plane 1, the layer 2 and the lower half plane 3 as shown in Fig. 1,
respectively.

Crack problems in the non-homogeneous piezoelectric/piezomagnetic materials do not appear to be
analytically tractable for arbitrary variations of material properties. Usually, one tries to generate the forms
of non-homogeneities for which the problem becomes tractable. Similar to the treatment of the crack
problem for isotropic non-homogeneous materials in previous works (Delale and Erdogan, 1988; Fildis and
Yahsi, 1996; Ozturk and Erdogan, 1997), we assume the material properties are described by:

Ccas = cag €™, ers = eysoel”, en = enoe™, qis = qiso€’™, diy = dioe™,
_ px
Hip = Hio€ (4)
where c449 is shear modulus, e;s is piezoelectric coefficient, &1y is dielectric parameter, ¢;sy is piezomagnetic
coefficient, d)j, is magnetoelectric coefficient, u,,, is magnetic permeability. f is the functionally graded

parameter.
The constitutive equations for the mode III crack can be expressed as

@) = cany + 1o + %5‘//,(/? (k=x,y, i=1,2,3) (5)
D(i): (i) (i>_d (1) k= i—=1.2.3 6
k €1sW Sll(b,k 11‘#1; ( XV, 1 y ) ( )

Bl(ci) = q15w,(l? - dlld)(llc) - :ulll//,(llc) (k =X, i= 17273) (7)
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The anti-plane governing equations are

(k) (k)
C44°(Vzw(“+ agx )+elso<v2¢>< ¢ >+elso<v2w /36‘” ) 0 (8)

aw(v%u“+ agf>-—am<vﬂ¢“-+ﬁ il ><—mm<vﬂw ﬁ )::o (9)
(k)
q150 (Vzw(i) + /362; ) — d110< d) ) — Huo( lp ) =0 (10)

where V2 = 0% /0x? + 8% /0)” is the two dimensional Laplace operator.

3. Solution

The system of above governing equations is solved using the Fourier integral transform technique. The
general expressions for the displacement components, the electric potential and the magnetic potential can
be obtained as follows:

1 *© :
wl (x,y) = I [ Ai(s)e e ™ ds

oV (x,y) = apw (x, y) +21—n /_::Bl(s)e—vyefisxds, v an
lp(l)(X,J/) = alw(l)(x,y) —|—% /:: Ci(s) e e i dg

me=$[munv+m)]'ms

¢ (x,) = aow? (x,y) + % [:[Cz(s) e 4 Dy(s)e”e ™ ds, 0<y<h (12)

1 [~ 4
Y, y) = a® (x,y) + o / [Bx(s)e™ + Fy(s)e”]e ™ ds
T J_

) =5 / A5(s) e e ds

oV (x,y) = agw® / s)e’e™ds, y<0 (13)

YO (x,y) = am® / s)e”e " ds

where A;(s), Bi(s), Ci(s), Ax(s), Ba(s), Ca(s), Da(s), Es(s), Fr(s) As(s), B3(s) and Cs(s) are unknown func-
tions, y = V/if + 5%, ag = MLtidils, g = Gt
So from Egs. (5)—(7), we have
W e/}x

Ty (x7y) = _Z

P[(caso + averso + a1qis0)Ai (s) + ersoBi(s) + g150Ci (s)] e Ve ds (14)
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e
2n

T / V[enoBi(s) + diCi(s)]e e ™ ds

o0
efx
2n

= — / 'y[d]](]B] (S) + lull()Cl (S)] e_yy C_m dS

e e]

efr oo

o P{[(caso + averso + ai1qis0)A2(s) + e150Ca(s) + qisoEa(s)] e

— [(caso + averso + a1q150)Ba(s) + e1soDa(s) + qisoFa(s)] € e ds

eﬁx o0 ) | )
) % / y{[lSllOCZ(S) * d“OEZ(S)] e — [8110D2(S) + dllon(S)]e'y}e Y q¢
eﬁx 00 M | |
2 / PH[d110Ca(s) + wy10E2(s)] €7 — [dioDa(s) + pyofa(s)] e” e ds
eﬂx o] "
= / P[(caso + averso + a1qis0)As(s) + ersoB3(s) + q150Cs(s)] e e ds
e/;x o0 ” |
_ % V[811033 (S) + d110C3 (s)] e/y eflsx dS
eﬂx 00 ” .'
o / Y[di10B3(s) + 1,0C3(s)] €™ e ds

(22)

To solve the problem, the jumps of the displacements, the electric and the magnetic potentials across the
crack surfaces are defined as follows:

filx) = wm(x7 ht) — w(z)(x, h)

flx) = w® (x,07) — w<3)(x, 07)

for(x) = ¢'
Sin(x) = ¢'
Spx) =y
finlx) =y

D, hT) = % )
2>(x7 0+) - ¢(3)(xﬂ O_)
1>(x7 h+) - lp(Z)(xa hi)

Dx,07) =y (x,0)

(23)
(24)
(25)
(26)
(27)

(28)

Substituting Eqgs. (11)—(13) into Egs. (23)—(28), and applying the Fourier transform and the boundary
conditions, it can be obtained

Ai(s)e" = Aa(s) e = Ba(s) e = fi(s)

Az(s) + Bz(S

) = 43(s) = fa(s)

ay [A] (S) e — Az(S) e — B> (S) C}’h] + B (S) e — C, (S) e~ — D, (S) e =0

(29)
(30)

(31)
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ao[Al(S) + Bz(s) — Ag(S)] + Cz(S) + Dz(S) — Bg(S) =0 (32)
a[Ai(s)e™ — Ay(s)e ™™ — By(s) €] 4+ Ci(s)e " — Ex(s)e " — By(s)e™ =0 (33)
ai[da(s) + Ba(s) — As(s)] + Ex(s) + Fa(s) — Cs(s) = 0 (34)

A superposed bar indicates the Fourier transform throughout the paper. Substituting Eqgs. (14)—(22) into
Egs. (1) and (2), it can be obtained

[(cano + aoerso + aiqiso)A1(s) + e150B1(s) + qisoCi(s)] € " — [(caao + aoerso + ai1qiso)Aa(s) + e150Ca(s)
+ qis0Ea(s)] € " + [(caso + aoerso + arqiso)Ba(s) + ersoDa(s) + qisoFa(s)] e’ =0 (35)

(caao + aoerso + a1q150)A42(s) + e150Ca(s) + qrsoE2(s) — [(caso + averso + a1q150)Ba(s) + e1s0Da(s)

+ q150F>(s)] + [(caqo + aoerso + a1qi50)A3(s) + e1s0B3(s) + q150C3(s)] = 0 (36)
—le10B1(s) + d110Ci(s)] e + [e110Ca(s) + di10Ea(5)] €7 — [e110Da(s) + di10Fa(s)] e =0 (37)
—£110Ca(5) — di10Ea(s) + e110D2(s) + diioF(s) — e110B3(s) — di1oCs(s) = 0 (38)
[—dn0Bi(s) = p110Ci(s)] €7 + [dioCals) + yoEa(s)] €™ — [dnoDa(s) + pipf(s)]e” = 0 (39)
[=di10Ca(s) — piioEa(s) + dioDals) + py1ef(s)] — diioB3(s) — pyeCs(s) =0 (40)

By solving 12 Egs. (29)—(40) with 12 unknown functions 4, (s), Bi(s), Ci(s), 42(s), Ba(s), Ca(s), Da(s), E2(s),
F(s) As(s), B3(s) and Cs(s) and applying the boundary conditions (1) and (2), it can be obtained:

% [:fl(s)e’mds =0, |x|]>1 (41)
% /_:J—pz@)efisxds:o, x| > I @)
px 0 B '
C42); [m '))[fl(s) + e*'»"hfz(s)} e ¥ ds = ‘L'()(x)7 |X| < [ (43)
px %) B _ ‘
U [T Bl s =, b < @4)
and
T51(5) =0, fa(s) =0, f(x) =0, fy(x)=0 for all s and x (45)
Su(s) =0, fias) =0, f(x) =0, fio(x)=0  forall sand x (46)
From Egs. (41)—(44), it can be obtained
) =) = A6 =0, ) =) = 72(,0) = 2 (x,0) @)

) G G NG
D; (x,h) = D; )(x,h) = D)( )(x,0) = D} )(x,0) (48)
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Bi,l)(x7 h) = B;Z) (x,h) = B;z) (x,0) = B;,S) (x,0) (49)

To determine the unknown functions f;(s) and f(s), the above two pairs of dual integral equations (41)—
(44) must be solved.

4. Solution of the dual integral equations

The Schmidt method (Morse and Feshbach, 1958; Zhou et al., 1999; Zhou and Wang, 2002) is used to
solve the dual integral equations. The jumps of the displacements across the crack surfaces are represented
by the following series:

=

e 11 2
fi() = flx) = ;bnpn(“)(%“) (1 —%) for —I<x<! (50)
fix) =£i(x) =WV, h") —w? (e, h7) = w? (x,07) = w®(x,07) =0 for |x| >/ (51)

where b, are unknown coefficients to be determined and P{'/>1/?)(x) is a Jacobi polynomial (Gradshteyn and
Ryzhik, 1980). The Fourier transform of Egs. (50) and (51) is (Erdelyi, 1954)

F(n+l+%)

py (52)

= 1 n-n
5) = Z;bnGnEJnH(sl), G, = 2v/n(—1)"i

where I'(x) and J,(x) are the Gamma and Bessel functions, respectively.
Substituting Eq. (52) into Eqs. (41)-(44), respectively. It can be shown that Eqs. (41) and (42) are
automatically satisfied. After integration with respect to x in [—/,x], Eqs. (43) and (44) reduces to

X

C )) ] —isx is —ps
“‘“’Zb G, / Tl e (s e ’]ds:[ to(s) e ds (53)

1
From the relationships (Gradshteyn and Ryzhik, 1980)

sin[nsin~' (b/a)]

© ] | B
‘ n
-J, in(bs)ds = i )
/0 . (Sa) Sln( S) S a" Sll’l(l’lTL’/Z) b ( )
_asmnn/e) s,
nlb+ Vb2 —a?]"
coslusin " (b/a)] -,
(o] 1 " ’ )
~J, bs)ds = )
/0 - (sa) cos(bs)ds a" cos(nm/2) > h
>a

nb+ Vb2 —a?]"’
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the semi-infinite integral in Eq. (53) can be modified as:

/ D 4+ ey (1) — ] ds

S2
)] Tl}, n=1,3,57,...

cos[n+l sin~ (

~I =

n+1
2

{
3 L s o
[

z 1t —0,2,4
p—— l)] } n=20,2,46,...
+/ _ y_S+ze*}’h:|Jn+l(sl)[eﬂsx_ 1\1]d
o SL s s
01 y+s y ) .
| L a—vh —isx __ Lis/
+/m S[ —+le }J,,H(sz)[e e ds (56)

Thus the semi-infinite integral in Eq. (53) can be evaluated directly. Eq. (53) can now be solved for the
coefficients b, by the Schmidt method (Morse and Feshbach, 1958; Zhou et al., 1999; Zhou and Wang,
2002). For brevity, Eq. (53) can be rewritten as

b.E,(x)=U(x), —-I<x<! (57)
>

where E,(x) and U(x) are known functions and the coefficients b, are to be determined. A set of functions
P,(x) which satisfy the orthogonality condition

! 1
/ Pu()Py(x)dx = NySpns Ny = / P2(x) dx (58)
—1I -1
can be constructed from the function, E,(x), such that
n Mn
R = 4 EW (59)

=0
where M;; is the cofactor of the element dj; of D,, which is defined as

d007d017d027 e 7d0n
d107d117d127 cee 7d1n

I
D, = | 40,1, do,s oy | dyj = / Ei(x)E;(x) dx (60)
dn07dnl7dn27 e 7dnn
Using Egs. (57)—(60), we obtain

My 1!
j=n p -

J]

5. Intensity factors

The coefficients b, are known, so that the entire perturbation stress field, the perturbation electric dis-
placement field and the magnetic flux can be obtained. However, in fracture mechanics, it is of importance
to determine the perturbation stress 7., the perturbation electric displacement D, and the perturbation
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magnet1c flux B, in the vicinity of the crack tips. In the case of the present study, t! ), r)(;), r)(;), D},'), Dﬁ,z), Df),
B;” y ) and By along the crack line can be expressed respectively as

rﬁi)(x,h) = (2) (x,h) = tﬁf) (x,0) = TS)(x, 0) =1,

C44oe/3x ib G, /: z [+ e, (s) e ™ ds
- _"‘@ffﬁx nf;bnGn{ /0 (s e ds + /0 ME - Le (sl e ds
- [ O‘J,m(sl)ei‘“ds—l— [ (; [V;rs—&—%eVh}JnH(sl)ei‘”‘ds} (62)
Dy)(x7 h) = Di,z)(x,h) =Dp? (x 0) = 3 DY (x,0) =
- elif;ﬁx gbnGn /_ :: e M (she M ds
- _ elizﬁ" nzoc;b,,Gn{ /OOCJ,,H(SZ) e " ds + /000 [y ; il —|—§e_”h]J,,+1(sl) e " ds
_ [ Y o (sl)e s + [ ’ [Vj% Lo ga(st) ei‘”‘ds} (63)

B (x,h) = BY (x,h) = B (x,0) = B (x,0) =
Px
q 5 Y —vh —isx
S 1ifn EjbnGn[ ;[1+e M1 (s) e ds

= q”e ZbG{ / Jer(sT)e = ds + / (2 Lt (s e ds
0 S S
0 4 O ryts 7y ,
- / T (sl e ds + / [T—l—;e”h}JnH(sl)e“”‘ds} (64)

o0 o0

An examination of Egs. (62)—(64), the singular parts of the stress field, the electric displacement field and
the magnetic flux can be obtained respectively from the relationship (Gradshteyn and Ryzhik, 1980)

cos[nsin~" (b/a)]

, a>b
N7y

/0 najeospas = VEIL - (65)

Vbr = @b+ Vb — )"

N (66)
a" cos(nm/2)

V2 = @b+ Vp: - a"’

/0 " Jy(sa) sin(bs) ds —

b>a

/ Jo(she™ds =0, x>1 (67)

o0



4416 Z.-G. Zhou, B. Wang | International Journal of Solids and Structures 41 (2004) 44074422

The singular parts of the stress field, the electric displacement field and the magnetic flux can be expressed
respectively as follows for the upper crack (x > /):

Caap € & Caso e
—Z[/ maas= [ o] 55 Sncow 6

0
_ elSOe Zb G, |:/ n+1(Sl) 19xds . / Jn+](Sl) uxd :| 31506 anG Qn (69)

o0

px 0 px o0
611506 —isx —isx _ q150€
= Zb G[/ Jori(sl)e ds—[mJn+1(sl)e ds} = ;bnGnQn(x) (70)
where
(_1)'2-‘1n+1
, n=20,2,4,6,...
0,(x) = V= Plx+ Va2 — 2!
' i(—1)T !
n=1,3,517,...

VX2 — Plx 4+ Vx2 — 12]"+1 ’

The singular parts of the stress field, the electric displacement field and the magnetic flux can be expressed
respectively as follows for the upper crack (x < —/):

_ 04406 Zb G, [/ n+1(Sl) ﬂéxds / n+1 Sl) DXd ] C440€ Zb Gy Q" (71)

0

Juri(sh)e ‘”d} e”(’e ZbGQ x) (72)

e eﬁx - > —isx
D, = — 12)n ZO:bnG,{/O Jur1(sl)e ds—/

—00

0
By— - qlsoe’ ZbG[ / Ty (sT) e ds — / Jua(shye ds} q‘”e > hGOW (1)

n=0 o0 n=0

where
(71)%[71-%—1
, n=0,2,4,6,...
Q*( ) \/xZ - 12[|x| + \/x2 - 12]"‘“
n X)= nt
—i(—1)F
n=1,3,5717,...

Va2 = Pl|x| + v = "

The results of the stress, the electric displacement and the magnetic flux intensity factors at the right tip
of the upper crack can be given as follows, respectively.

& I'n+1+1
T . :C44oe IREY 2
K(1) = Jim /26 =1) 1 = 292 ZO:( )b, (74)
K2(I) = lim\/2(x — 1) - D, = esne” f:(—l)”b Fa+1+3 (75)
TV YT VAl =0 ’ n!
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pi 1
I)=1lim\/2(x—1) B, = "1506 Z +—,+) (76)

x—It

The results of the stress, the electric displacement and the magnetic flux intensity factors at the left tip of the
upper crack can be given as follows, respectively.

& T(n+1+1)
D=l ). g, =S40 A A
K(ol) = tim V=0 = S 5 L (77)

—pl > 1 1
KP(—1) = 1151}7\/2(|x|_1).02:e‘5°e me (78)

B oo |41
K8 (—1) = im /2(x| = 1) - By = q150© anm (79)

6. Numerical calculations and discussion

As discussed in the works (Zhou et al., 1999; Zhou and Wang, 2002), it can be seen that the Schmidt
method is performed satisfactorily if the first 10 terms of infinite series in Eq. (57) are retained. The
behavior of the sum of the series keeps steady with the increasing number of terms in Eq. (57). The crack
surface loading —1y(x) will simply be assumed to be a polynomial of the form as follows:

—fo(X)=—po—p1(§) —pz()—;)z—ps(;f (80)

Since the problem is linear, the results can be superimposed in any suitable manner. The results are ob-
tained by taking only one of the four input parameters py, pi, p» and p; non-zero at a time. The normalized
non-homogeneity constant f is varied between —3.0 and 3.0, which covers most of the practical cases. The
results of the present paper are shown in Figs. 2-10. From the results, the following observations are very
significant:

(1) From the results, it can be shown that the singular stress, the singular electric displacement and the
singular magnetic flux in functionally graded piezoelectric/piezomagnetic materials carry the same forms as

0.4 T T
| KO pNT KD pAT

3 2 4 0 1 2 3

Fig. 2. Influence of f/ on the stress intensity factors under the loading to(x) = py for #// = 0.5 and / = 1.0.
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Fig. 3. Influence of //I on the stress intensity factors under the loading t(x) = py for f = 0.5 and / = 1.0.
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Fig. 5. Influence of f§ on the stress intensity factors under the loading 7o (x) :pz(i[')2 for /1 =0.5and / = 1.0.
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Fig. 6. Influence of f§ on the stress intensity factors under the loading 7o(x) = p3 (f)3 for h/l = 0.5 and / = 1.0.
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Fig. 7. Influence of / on the stress intensity factors under the loading 7o(x) = py for = 0.5 and 2 =0.5.
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Fig. 8. Influence of / on the stress intensity factors under the loading 7o(x) = pi(§) for § = 0.5 and 7 = 0.5.
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Fig. 9. Influence of / on the stress intensity factors under the loading 7o(x) = pz(§)2 for f=0.5and h =0.5.
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Fig. 10. Influence of / on the stress intensity factors under the loading 7o(x) = p3 ({); for f=0.5and h =0.5.

those in a homogeneous piezoelectric/piezomagnetic materials or in a homogeneous piezoelectric materials
but the magnitudes of the intensity factors depend significantly upon the gradient of the functionally graded
piezoelectric/piezomagnetic materials properties as discussed in the work (Weng and Li, 2002).

(i1) The stress intensity factors do not depend on the material properties. However, the stress intensity
factor depends on the non-homogeneity parameter . This is the same as the anti-plane shear fracture
problem in the general non-homogeneity elastic materials. From this we can also obtain that the stress fields
are independent of the electric displacement fields and the magnetic fields for the anti-plane shear problem.
However, the electric displacement and the magnetic flux intensity factors depend on the non-homogeneity
parameter f§ and the properties of the magneto-electro-elastic composite materials. It can be shown in Egs.
(74)—(79).

(ii1) For the symmetric loading, the stress intensity factors at crack tips are symmetric about the line
B =0 as shown in Figs. 2 and 5. However, for the anti-symmetric loading, the stress intensity factors at
crack tips are symmetric about the point K = 0 and = 0 as shown in Figs. 4 and 6.

(iv) The stress intensity factors increase with the increase in the distance between the parallel cracks as
shown in Fig. 3. This phenomenon is called crack shielding effect as discussed in Ratwani’s paper (Ratwani
and Gupta, 1974). However, the shield effects will be very small for /1 > 5.0.

(v) For the symmetric loading as shown in Figs. 2 and 5, the stress intensity factor at the right tip of the
crack tends to increase with increase in the functionally graded parameter f, until reaching a maximum at
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p = 1.5, then it decreases in magnitude. However, the stress intensity factor at the left tip of the crack tends
to increase with increase in the functionally graded parameter f, until reaching a maximum at ff = —1.5,
and then it decreases in magnitude.

(vi) For the anti-symmetric loading as shown in Figs. 4 and 6, the stress intensity factor at the right tip of
the crack tends to increase slowly with increase in the functionally graded parameter f until f = 2.0, and
then it increases rapidly in magnitude. However, the stress intensity factor at the left tip of the crack tends
to increase rapidly with increase in the functionally graded parameter § until § = —2.0, and then it increases
slowly in magnitude. Hence, the stress intensity factor can be reduced by adjusting the functionally graded
parameter 5 according to the form of the loading.

(vii) The stress intensity factors depend on the crack length. This can be obtained from Egs. (53) and
(62). The dimensionless stress intensity factors do not always increase with the increase in the crack length
in functionally graded piezoelectric/piezomagnetic materials under the different anti-plane shear loading as
shown in Figs. 7-10. This phenomenon has been discussed in the reference (Shbeeb and Binienda, 1999).

(viii) For the electric displacement and the magnetic flux intensity factors, they have the same changing
rule as the stress intensity factor as shown in Eqs. (74)—(79). The results of the electric displacement and the
magnetic flux intensity factors can be directly obtained form the results of the stress intensity factors
through Eqgs. (74)—(79). Here, they are omitted.
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